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Part I: Context



Vocabulary

I CPU Utilization: That thing that comes out of ’top’. ;)

I Slot: An allocation for a job thread to be dispatched.

I Job Run Time: The time a job is allocated to CPU(s)

I Reserved Time: Run time multiplied by slots reserved

I CPU Time: Quantity of CPU time consumed by job

I Job Efficiency: CPU time divided by reserved time



The Good Ole Days

When I was a kid...

Simulation batch jobs were single threaded and consumed precisely
one, full CPU. i.e. jobs were almost 100% efficient.



The Good Ole Days

Well... OK... That was never really true,...

It was true that a remarkably large number of jobs were very
efficient. True enough in fact that the standard practice of the day
was to configure compute clusters to run one job per CPU core,
and achieve nearly 100% CPU utilization.

In typical LSF speak: The slot:core ratio was 1.
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Today

Average job efficiency is pretty low.



Today

Running with slot : core = 1 wastes significant resources.



Today

Is it safe to run with slot : core > 1?



Running with slot : core > 1

I Increase system utilization

I Increase throughput

I Creates a risk of decreased individual run time



Running with slot : core > 1

I Increase system utilization

I Increase throughput

I Creates a risk of decreased individual run time

This presentation discusses techniques to quantify and limit the
risks.



Running with slot : core > 1

By quantifying and limiting the risk, we transform the question of
setting higher slot : core values into one of business priorities and a
well formulated risk-benefit analysis.



Part II: Thought Experiments



Some Thought Experiments

Next we consider three thought experiments in which we take a
simplistic point of view using averages. This line of thinking is fine
for thought experiments intended to provide insight into general
system behavior, but it is wholly inappropriate for decisions
regarding the configuration of production compute clouds.



A thought experiment (Number 1)

The Scenario

Average job efficiency is 90%. Compute servers have 4 cores.



A thought experiment (Number 1)

CPU #2 CPU #3CPU #1 CPU #4



A thought experiment (Number 1)

The Scenario

Average job efficiency is 90%. Compute servers have 4 cores.

Observations
I System utilization is capped at 90%

I 40% of a CPU is wasted



A thought experiment (Number 2)

The Scenario

Average job efficiency is 80%. Compute servers have 4 cores.



A thought experiment (Number 2)

CPU #2 CPU #3CPU #1 CPU #4



A thought experiment (Number 2)

The Scenario

Average job efficiency is 80%. Compute servers have 4 cores.

Observations
I System utilization is capped at 80%

I We have 80% of a CPU wasted.

I We have room for a 5th job (i.e. 80% of a CPU)!



A thought experiment (Number 2)

Opportunity!

If we set slot:core to 5:4, then

I Systems would be utilized at 100%

I Throughput improves by 20%

I Job run time is not impacted!



A thought experiment (Number 2)

We have room 
for a 5th job!

CPU #2 CPU #3CPU #1 CPU #4



A thought experiment (Number 3)

The Scenario

Average job efficiency is 90%. Compute servers have 12 cores.



A thought experiment (Number 3)

CPU #6 CPU #7CPU #5 CPU #8

CPU #A CPU #BCPU #9 CPU #C

CPU #2 CPU #3CPU #1 CPU #4



A thought experiment (Number 3)

The Scenario

Average job efficiency is 90%. Compute servers have 12 cores.

Observations
I System utilization is capped at 90%

I We have more than an entire CPU wasted!



A thought experiment (Number 3)

Opportunity!

If we set slot:core to 13:12, then

I Systems would be utilized at 97.5%

I 30% of a CPU is still wasted!

I Throughput improves by 7.5%

I Job run time is not impacted!



A thought experiment (Number 3)

CPU #6 CPU #7CPU #5 CPU #8

CPU #A CPU #BCPU #9 CPU #C

CPU #2 CPU #3CPU #1 CPU #4



Recap

The Idea

The idea is simple: Use left over CPU capacity for more jobs



Recap

The Optimist

At 75% job efficiency, I can run 33.3% more jobs!!!



Recap

4 Extra Jobs!!

CPU #6 CPU #7CPU #5 CPU #8

CPU #A CPU #BCPU #9 CPU #C

CPU #2 CPU #3CPU #1 CPU #4



Recap

The Realist

Nope.



Recap

In short, the realist recognizes the previously mentioned limitations
of the simplistic approach we have taken with our thought
experiments.



Part III: Compute Cluster Vulgarities



Job efficiency varies as the job runs

CPU Utilization in an ideal world

CPU Utilization in the real world
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Job efficiency varies between jobs

Ideal CPU Utilization vs. Real World
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Batch scheduling job placement must be considered

Scheduling polices can..

I Lump together jobs of similar efficiency

I Pack jobs onto systems till they appear full

I Avoid systems that look full but are not

I ...



Part IV: Probability Theory



Dice!!



Rolling One Die

Face Ways To Roll Probability

1 1 1/6

2 1 1/6

3 1 1/6

4 1 1/6

5 1 1/6

6 1 1/6



Rolling Two Dice

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12



Rolling Two Dice

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

6 · 6 = 36 different ways to roll a pair of dice.

Of those 36 we see 3 different ways to get a total of 4.

Thus the probability of rolling a 4 is 3
36 = 1

12 = 0.0833333.



Rolling Two Dice

Total Ways To Roll Probability

2 1 1/36
3 2 2/36
4 3 3/36
5 4 4/36
6 5 5/36
7 6 6/36
8 5 5/36
9 4 4/36

10 3 3/36
11 2 2/36
12 1 1/36



Rolling Three Dice

1 1 2 3 4 5 6

1 3 4 5 6 7 8
2 4 5 6 7 8 9
3 5 6 7 8 9 10
4 6 7 8 9 10 11
5 7 8 9 10 11 12
6 8 9 10 11 12 13

2 1 2 3 4 5 6

1 4 5 6 7 8 9
2 5 6 7 8 9 10
3 6 7 8 9 10 11
4 7 8 9 10 11 12
5 8 9 10 11 12 13
6 9 10 11 12 13 14

3 1 2 3 4 5 6

1 5 6 7 8 9 10
2 6 7 8 9 10 11
3 7 8 9 10 11 12
4 8 9 10 11 12 13
5 9 10 11 12 13 14
6 10 11 12 13 14 15

4 1 2 3 4 5 6

1 6 7 8 9 10 11
2 7 8 9 10 11 12
3 8 9 10 11 12 13
4 9 10 11 12 13 14
5 10 11 12 13 14 15
6 11 12 13 14 15 16

5 1 2 3 4 5 6

1 7 8 9 10 11 12
2 8 9 10 11 12 13
3 9 10 11 12 13 14
4 10 11 12 13 14 15
5 11 12 13 14 15 16
6 12 13 14 15 16 17

6 1 2 3 4 5 6

1 8 9 10 11 12 13
2 9 10 11 12 13 14
3 10 11 12 13 14 15
4 11 12 13 14 15 16
5 12 13 14 15 16 17
6 13 14 15 16 17 18



Rolling Three Dice

1 1 2 3 4 5 6

1 3 4 5 6 7 8
2 4 5 6 7 8 9

3 5 6 7 8 9 10

4 6 7 8 9 10 11

5 7 8 9 10 11 12

6 8 9 10 11 12 13

2 1 2 3 4 5 6

1 4 5 6 7 8 9

2 5 6 7 8 9 10

3 6 7 8 9 10 11

4 7 8 9 10 11 12

5 8 9 10 11 12 13

6 9 10 11 12 13 14

3 1 2 3 4 5 6

1 5 6 7 8 9 10

2 6 7 8 9 10 11

3 7 8 9 10 11 12

4 8 9 10 11 12 13

5 9 10 11 12 13 14

6 10 11 12 13 14 15

4 1 2 3 4 5 6

1 6 7 8 9 10 11

2 7 8 9 10 11 12

3 8 9 10 11 12 13

4 9 10 11 12 13 14

5 10 11 12 13 14 15
6 11 12 13 14 15 16

5 1 2 3 4 5 6

1 7 8 9 10 11 12

2 8 9 10 11 12 13

3 9 10 11 12 13 14

4 10 11 12 13 14 15
5 11 12 13 14 15 16
6 12 13 14 15 16 17

6 1 2 3 4 5 6

1 8 9 10 11 12 13

2 9 10 11 12 13 14

3 10 11 12 13 14 15
4 11 12 13 14 15 16
5 12 13 14 15 16 17
6 13 14 15 16 17 18

63 = 216 different ways to roll three dice with 6 sides.

Of those 216 we see 27 different ways to get a total of 10.

Thus the probability of rolling a 10 is 27
216 = 1

8 = 0.125.



Rolling Three Dice

Total Ways To Roll Ways To Roll Probability

3 1 1 1/216
4 1+2 3 3/216
5 1+2+3 6 6/216
6 1+2+3+4 10 10/216
7 1+2+3+4+5 15 15/216
8 1+2+3+4+6 21 21/216
9 2+3+4+5+6+5 25 25/216

10 3+4+5+6+5+4 27 27/216
11 4+5+6+5+4+3 27 27/216
12 5+6+5+4+3+2 25 25/216
13 6+5+4+3+2+1 21 21/216
14 1+2+3+4+5 15 15/216
15 1+2+3+4 10 10/216
16 1+2+3 6 6/216
17 1+2 3 3/216
18 1 1 1/216



Computational Efficiency

Rolling 2 Dice

Computing the probabilities for rolling two dice, each with six
sides, required us to form a table with 6 · 6 = 36 entries. The
computational complexity of this problem is O(62).



Computational Efficiency

Rolling 3 Dice

Computing the probabilities for rolling three dice, each with six
sides, required us to form a table with 63 = 216 entries. The
computational complexity of this problem is O(63).



Computational Efficiency

Rolling n Dice

Computing the probabilities for rolling n dice, each with six sides,
would require us to form a table with 6n entries. The
computational complexity of this problem is O(6n).



Computational Efficiency

What if the dice had m sides?

Computing the probabilities for rolling n dice, each with m sides,
would be just about the same problem. Just more rows a columns
in our table! Thus the computational complexity would become
O(mn).

This is very, very bad...



Fundamental Probability Reminder

If the probability of E1 is p1, and the probability of E2 is p2, then

The probability of both E1 AND E2 occurring is p1 · p2

The probability of E1 OR E2 occurring is p1 + p2



Rolling Two Dice (again)
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Compute the probability of each roll (the product of the
probabilities of each face), and then sum down diagonals (the 6
diagonal is highlighted in yellow).



Rolling Two Dice (again)
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Rolling Two Dice (again)

This technique hasn’t saved us any computation effort for the two
dice case. It has simplified the algorithm – multiply & add instead
of count, search, and add. The real power of the technique is that
it easily generalizes to dice with different face counts, and to unfair
dice (that is a die which has different probabilities per face).



Rolling Two Dice (again)

Now we roll one fair die with 6 sides, and one loaded die with 4.
Total Probability

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

Total Probability

1 2/15
2 2/15
3 9/15
4 2/15



Rolling Two Dice (again)
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Here we have a 6 sided die, and a loaded die with 4 sides!



Rolling Two Dice (again)
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The probability of rolling a 6: 1

45 + 1
45 + 1

10 + 1
45 = 1

6 = 0.166666.



Rolling Two Dice (again)

Total Probability

2 2/90
3 4/90
4 13/90
5 15/90
6 15/90
7 15/90
8 13/90
9 11/90

10 2/90



This algorithm in R

d1 and d2 hold the probabilities for each die, and probs is the
resulting combined probability table.

1 d1 <− r ep (1 / 6 , 6 ) ;
2 d2 <− c (2 / 15 , 2/ 15 , 9/ 15 , 2/ 15)
3 ptab <− d1 %∗% t ( d2 )
4 s t ab <− row ( ptab ) + c o l ( ptab )
5 r r a ng e <− min ( s t ab ) : max( s t ab )
6 probs <− s a pp l y ( r range ,
7 f u n c t i o n ( r ) sum( ptab [ s t ab==r ] ) )

Note: This is code is for illustration. It is super simple to understand, but is

kinda silly – like explicitly constructing the matrices..



Applying What We Have Learned

OK. That loaded dice thing was interesting, but how will that
make it faster to compute the probability of throwing a whole hand
full of dice?



Applying What We Have Learned

Remember this? The probability table for throwing two fair dice..
Total Ways To Roll Probability

2 1 1/36
3 2 2/36
4 3 3/36
5 4 4/36
6 5 5/36
7 6 6/36
8 5 5/36
9 4 4/36

10 3 3/36
11 2 2/36
12 1 1/36



Applying What We Have Learned

How about we throw one fair 6 sided die, and one wonky die with
the same probability rules as the pair of dice we did before?

Total Probability

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

Total Ways To Roll Probability

2 1 1/36
3 2 2/36
4 3 3/36
5 4 4/36
6 5 5/36
7 6 6/36
8 5 5/36
9 4 4/36

10 3 3/36
11 2 2/36
12 1 1/36



This idea in code

Die face probabilities in daDie, and number of dice in numDi. The
resulting combined probability table ends up in probs.

1 numDi <− 15
2 daDie <− r ep (1 / 6 , 6 ) ;
3 probs <− daDie
4 f o r ( i i n 2 : numDi ) {
5 ptab <− daDie %∗% t ( probs )
6 s t ab <− row ( ptab ) + c o l ( ptab )
7 r r a ng e <− 1 :max( s t ab )
8 probs <− s a pp l y ( r range ,
9 f u n c t i o n ( r ) sum( ptab [ s t ab==r ] ) )

10 names ( p robs ) <− r r a ng e
11 }

Note: Again... This is code is for illustration. It is super simple to understand,

but is kinda silly – like explicitly constructing the matrices..
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Part V: Computing Risk



Weren’t we talking about slot:core ratios?

That was fun! How do I set my slot:core ratio again?
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A probability problem

The Question

Randomly pick n single threaded jobs, and place them on an n core
compute server. What is the utilization of that compute server?



A probability problem

What kind of answer can we provide?

We can’t know what the utilization will be, but we can
approximate the server utilization given any n job efficiency values
and report the probability of all the possibilities.



A probability problem

How?

Yep. We are going to think about that graph as if it were a loaded,
100 sided die!
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Probability is not Risk

What is risk?

The classical actuarial definition is that risk is the product of the
probability of an even and the cost of that event.

R = p · C



Probability is not Risk

Cost?

It can be difficult to quantify cost for many events; however,
sometimes we can proxy cost with business impact measured in
other terms.



Probability is not Risk

How about “runtime” as a cost?

In general if we oversubscribe a system by a particular percentage
with very efficient jobs, we can expect jobs to potentially run
about that same percentage slower. This isn’t always true on
Linux, but it is a reasonable place to start.



Probability is not Risk

How do you phrase this to leaders?

We can get a 20% improvement in throughput at a cost of around
%4 of our jobs running about %15 slower.



Probability is not Risk

How do you pick a risk level?

Simply present the risk levels of the various options (perhaps with
a graph like last one we looked at) to your leadership team, and
ask them to select a level of risk they are comfortable with.



FAQ

I just need to think about dice?

Our probably experiment was pretty simple, but it actually works
for may sites. So if you are lucky, it may be all you need. For TI
we had to also take into consideration

I Queue structure & LSF scheduling parameters

I Job arrival & resource requirement patterns



FAQ

How do I check if my model works?

One of the most effective ways is to compute a theoretical server
utilization at your current slot:core ration, and then compare it to
a histogram of real server utilization.



FAQ

How do I check if my model works?

Simulation! i.e. run your new cluster configuration through a
cluster simulator, and simply observe the behavior. If it matches
your model, then you probably have a good model.

How do I check if my model works?

Simulation! i.e. run your new cluster configuration through a
cluster simulator, and simply observe the behaviour. If it matches
your model, then you probably have a good model.



FAQ

Risk mitigation?

Job scheduling load thresholds based on true CPU run queue
lengths and CPU utilization will go a long way towards keeping
systems from getting overloaded.



Thank You!


